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AbSTRACT

2D QSAR has been performed on a series of pyridine carbonitrile and trifluoromethyl phenyl deriva-
tives. 53 compounds were divided into training and test sets out of which 37 compounds generated a 
final QSAR model. The most significant model with n = 37, r = 0.916, r2 = 0.762, r2cv = 0.759, s 
value = 0.388, f value = 41.76 was developed using MLR analysis. For PLS, the fraction of variance 
explained = 0.806 was observed. A comparable PLS model with r2 = 0.806 and Neural model with r2 
= 0.853 indicated good internal predictability of the model. external test set validation provided r2 
values of 0.744 and 0.768 for MLR and PLS analysis, respectively. Dipole moment Z Component, 
Log P, Shape flexibility index, and Vamp LUMO descriptors proved to be significant for inhibition of 
Cathepsin S. These findings will be effective in designing more potent and effective Cathepsin 
S inhibitors.
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INTRODUCTION
The word “Cathepsin” has been derived from the 

Greek word ‘kathepsein’, which means “to digest”1,2. The 
enzyme came into light in the 20th century3. eleven human 
cysteine cathepsins are expressed in the human genome4. 
Cathepsins L, V, S, K, and F are endopeptidases, 
while cathepsins X, b, C, and H are exopeptidases. 
Cathepsins O and W are of unknown category1,5,6.

The gene symbol of cathepsin S is CTSS. It is 
a non-glycosylated cysteine proteinase. It belongs to 
the clan C1 (papain family)7,8. These enzymes are promi- 
nently situated intracellularly in the endolysosomal 
vesicles1,4,9. These are exclusively situated   in   the 
dendritic cells, macrophages, spleen, lymph nodes, 
monocytes and/or thymic cortical epithelial cells10,11. The 
enzyme is majorly involved in antigen processing and 
presentation12-14.

All cysteine proteases are made up of a signal peptide, 
a propeptide, and a catalytic domain15. Signal peptides 

are 10-20 amino acids long. It primarily causes the 
translocation into the endoplasmic reticulum during 
mRNA translation. Propeptides are of variable lengths 
and have three important functions. They act as a 
scaffold to promote the protein folding of the catalytic 
domain, as a chaperone to transport the proenzyme 
to the lysosomal compartment, and as a high-affinity 
reversible inhibitor to prevent the premature activation 
of the catalytic domain. The catalytic domain is 214-260 
amino acids long. It represents the mature, proteolytically 
active enzyme. It’s exceptionally conserved active site 
involves cysteine, histidine and asparagine residues1.

Cathepsin S assembly consists of a single chain 
monomeric protein of 217 amino acids with a molecular 
mass of 30kDa. The structure has two domains- left 
and right. The left domain contains residues 12-111, 
and 208-211 with helices ranging from residues 25-
40, 50- 56, and 68-78. The right domain is grounded 
on a six-stranded β-barrel motif, residues 1-11, and 
112-207, with small helical coiling of residues 119-
127, and additional helix from residues 139-143.  
The cleft of the active site lies in between these two 
domains containing the residues Cys25 and His15916-18. 
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Acidic pH is essential for the optimal activity of 
cathepsin enzyme19.

Cathepsin S plays a vital role in the various 
inflammation-associated disorders such as cancer15,20-25, 
arthritis18,26, periodontitis27, psoriasis18,28,   lung   
diseases29-35,   cardiovascular disease in patients 
with chronic kidney disease36-40, bone41, Sjögren’s 
syndrome42,43 and immune disorders44. Inhibitors of 
cathepsin S also act as immunomodulators45. Thus, 
research efforts are necessarily focused on cathepsin 
S, its use in diagnostics, and as therapeutic targets in 
diseases46,47. Cathepsin S inhibitors of dipeptidyl nitrile 
are an emerging target for the abolition of tumour25.

Rheumatoid arthritis (RA) is a chronic systemic 
autoimmune inflammatory ailment affecting all joints 
shielded by synovium. The genes encoding the major 
histocompatibility complex are gathered on a small portion 
of chromosome 6 in humans. It is also called as 
MHC complex or human leukocyte antigen complex 
(HLA)   molecule.   It significantly plays a central role in 
the pathology of RA48. The antigen is usually consumed by 
antigen- presenting cells (APCs), typically a macrophage 
present in the synovium. The antigen is broken into 
fragments by the peroxide enzyme inside the APCs49. The 
molecular mechanism involves the synthesis of MHC II 
αβ heterodimers in the endoplasmic reticulum, followed 
by the association of a protein, the invariant chain (Li) 
in the peptide-binding cleft. The αβLi complex gets 
relocated to the lysosome. Cathepsin S cleaves a part 
of the Li leaving a short fragment, CLIP, in the active 
site which prevents any premature binding of antigenic 
peptides50-55.

A different protein, HLA-DM, assists in the dissociation 
of the CLIP from the MHC protein providing the preferable 
binding site for the peptide fragments. The complex is 
transported to the cell surface after binding to the MHC 
II molecule50,56. This complex is presented to T-cells 
(CD4 cells i.e. T-helper cell). The T-cell receptor (TCR) 
recognizes it, binds to it, and causes APCs to secrete 
cytokines like IL-1, IFN-α, IFN-γ, TNF and other 
factors which activate lymphocytes and other immune 
cells to respond to the antigens causing inflammation18,34,48. 
Moreover, HLA-DR β1   alleles   majorly contribute 
genetically to RA. This gives a strong confirmation 
for adaptive immunity noteworthy in the pathogenesis of 
RA through MHC II-dependent T cell activation57.

The Quantitative Structure-Activity Relationship 
(QSAR) method is extensively employed in biological 
activity modeling, and computing ADMe/toxicity 

properties58. A QSAR model correlates the structure/
chemical characteristics of the molecule with their 
biological activities with the aid of a statistical equation. 
This data is useful in designing additionally potent 
compounds. The predictions of the biological activities 
can be done for new entities59. A QSAR analysis has 
great implications in enzyme inhibition studies, as 
well as in identifying the significant active sites in the 
receptor. Thus, QSAR studies have a central role in 
drug design60,61.

The present 2D QSAR study used here is simple 
and relatively less error-prone. It excludes any type of 
conformational search or structural alignment, thus, it 
is more valuable over 3D QSAR analysis62,63. In 2D 
QSAR, structural descriptors encode all   the   chemical 
information64. Thus, 2D is considered superior over 3D 
QSAR62,65,66.

MATERIALS AND METHODS
QSAR model was developed using 53 congeneric 

molecules using Multiple Linear Regression (MLR), Partial 
Least Squares (PLS), and Artificial Neural Network 
(ANN)67.

All the structures of carbonitrile derivatives 
mentioned in the literature68,69,70 were sketched using  
CHeM DRAW ULTRA 12.0 software as listed in Table VII.

Three compounds excluded from the series having 
undefined activity data were 2y, 3y, and 32 y.

The inhibitors had a suitable pharmacokinetic 
(ADMe) profile. The concept of absorption, distribution, 
metabolism, and excretion is important to know about 
the pharmacodynamics and pharmacokinetics of a 
chemical entity. Thus, the violation of Lipinski’s rule of 
five has been checked. Lipinski’s rule of five states that 
H-bond donors should be less than 5, H-bond acceptors 
should be less than 10, clog P (calculated log P) should 
be less than 5, and molecular weight should be less than 
500 Da. for good oral absorption of a compound71,72. 
Lipinski’s rule of five was applied to the whole data set 
as shown in Table I.

TSAR 3.3 software was used to calculate the 
molecular descriptors. Molecular descriptors provided all 
the valuable information about all the chemical structures 
and the respective substituents to figure out a good and 
predictive QSAR model73,74. Data reduction was done 
followed by the model development and validation 
using Multiple Linear Regression (MLR), Partial Least 
Squares (PLS), and Artificial Neural Network (ANN)67.
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Table I: Values of the calculated parameters for Lipinski’s rule of five

Comp. 
Name

ADME
(Molecular weight)

ADME (H-
bond acceptors)

ADME (H-
bond donors)

ADME
(Log P)

ADME
violations

1X 333.3 5 1 2.838 0

8X 292.28 3 0 4.054 0

9X 288.25 3 1 2.836 0

10X 318.28 4 1 2.583 0

11X 332.31 4 1 2.926 0

12X 348.31 5 2 2.140 0

13X 346.34 4 1 3.394 0

14X 362.34 5 2 2.192 0

15X 394.38 4 1 4.360 0

16X 331.33 3 2 2.609 0

17X 345.31 4 2 1.685 0

19X 445.49 6 0 2.809 0

20X 403.45 5 0 3.151 0

21X 459.52 6 0 2.861 0

22X 471.48 5 0 3.204 0

29X 346.34 4 0 3.172 0

30X 346.34 4 1 2.799 0

31X 360.37 4 1 3.195 0

32X 409.4 5 0 4.159 0

33X 409.4 5 0 3.759 0

34X 409.4 5 0 3.759 0

35X 437.46 5 0 4.395 0

36X 429.44 5 0 2.255 0

37X 401.43 5 1 2.445 0

38X 415.46 5 1 2.868 0

39X 429.49 5 1 3.192 0

42X 389.42 5 0 2.809 0

43X 444.46 6 1 1.555 0

44X 403.45 5 0 2.861 0
45X 429.49 5 0 3.187 0

46X 458.54 6 0 2.662 0

47X 472.57 6 0 3.005 0

1y 291.3 3 0 4.633 0

4y 259.25 2 1 2.145 0

5y 293.69 2 1 2.663 0

9y 277.24 2 1 2.285 0

10y 273.28 2 1 2.612 0
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RESULTS AND DISCUSSION
More than 250 molecular descriptors were generated. 

After data reduction, four independent molecular 
descriptors- Dipole moment Z Component (Substituent 
1), Log P (Substituent 2), Shape flexibility index (Whole 
molecule) and Vamp LUMO (Whole molecule) were left 
with high correlation with the dependent variable i.e. 
the biological activity. The model generated showed poor 
predictive ability. MLR was performed with 37 compounds 
in the training set and 16 compounds in the test set. 
None of the compounds were removed as outliers. The 
statistical values of the regression analysis of the whole 
data set of molecular descriptors are listed in Table II.

The value of r2 = 0.762 means that the MLR equation 
accounts for 76.2 % variance in the biological activity, 
illustrating a fairly realistic fit. The cross-validation 
regression coefficient is greater than 0.6 and the difference 
between r2 (0.762) and r2cv (0.759) is pretty lesser, 
which indicates the good internal predictive ability of 
the model.

The value of standard error, s (0.388), is considerably 
low for the regression to be important. It represents the 
quality of the fit of the model.

The correlation between parameters used and the 
biological activity is given in Table III. The statistical 
significance of the descriptors used in the final QSAR 
model is given in  Table IV. The parameters with t-values 
greater than 2 indicate their significance in the model.

11y 289.28 3 1 1.892 0

12y 279.66 2 1 2.195 0

18y 322.69 3 2 2.279 0

19y 388.76 4 3 2.233 0

20y 402.79 4 3 2.247 0

21y 402.79 4 2 2.479 0

22y 402.79 4 3 2.701 0

23y 366.75 4 2 1.368 0

24y 432.82 5 3 2.323 0

25y 429.81 5 2 2.355 0

26y 443.84 5 2 2.823 0

27y 509.91 6 2 3.555 1

28y 523.94 6 2 4.024 1

29y 537.97 6 2 4.427 1

30y 552 6 2 4.816 1

31y 443.84 5 2 2.601 0

Comp. 
Name

ADME
(Molecular weight)

ADME (H-
bond acceptors)

ADME (H-
bond donors)

ADME
(Log P)

ADME
violations

Table II: Statistical values obtained before data 
reduction and after performing MLR analysis

Sr. 
No.

Statistical  
test

values before 
data reduction

values 
after MLR

1. s value 0.49 0.388

2. f value 29.23 41.76

3. Regression 
coefficient, r

0.645 0.916

4. r2 0.487 0.762

5. Cross 
validation, 

r2(cv)

0.354 0.759

6. Residual sum 
of squares

26.234 4.813

7. Predictive sum 
of squares

31.427 7.193

The four highly correlated descriptors were used 
to generate the regression equation as shown below 
and analyzed for their relative impacts on the activity 
of the compounds.

Original equation (by MLR method)
y = 0.3661 * X1 + 1.8986 * X2 + 0.5152 * X3 - 

1.8339 * X4 – 7.6452
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Standardized equation (by MLR method)
y = 2.555 * S1 + 0.5728 * S2 + 0.6482 * S3 – 

0.3300 * S4 – 1.5955

Where, X1 is dipole moment Z component, X2 is 
log P, X3 is shape flexibility index, X4  is VAMP LUMO 
and y is the biological activity.

Table III: Correlation matrix showing the correlation between the biological activity and the  
molecular descriptors left after data reduction

X1: Dipole 
Moment Z

Component 
(Subst. 1)

X2: log P
(Subst. 2)

X3: Shape 
flexibility

Index (Whole 
Molecule)

X4: vAMP 
LUMO
(Whole 

Molecule)

log (1/IC50) 
values

X1: Dipole 
Moment Z 

Component
(Subst. 1)

1 -0.26884 -0.18614 -0.24881 0.069073

X2: Log P
(Subst. 2)

-0.26884 1 0.3471 0.68148 0.55287

X3: Shape 
Flexibility Index 

(Whole
Molecule)

-0.18614 0.3471 1 0.29526 0.76985

X4: VAMP  
LUMO
(Whole

Molecule)

-0.24881 0.68148 0.29526 1 0.20626

Log (1/IC50)

Values
0.069073 0.55287 0.76985 0.20626 1

Table Iv: Jacknife SE, Covariance SE, and t-values for the molecular descriptors

Molecular descriptor Abbreviation Jacknife SE Covariance SE t-value

Dipole moment Z component (subst. 1) X1 0.1062 0.0970 3.7736

Log P (subst. 2) X2 0.4577 0.3014 6.2983

Shape flexibility index (whole molecule) X3 0.0541 0.0552 9.3281

VAMP LUMO (whole molecule) X4 1.0623 0.4942 -3.7102

Constant C 1.291

MLR analysis gave satisfactory results with r2 = 0.762 
(training set) and 0.744 (test set). The results suggested 
good external validation. The MLR graphs for training 
and test set of compounds are shown in Fig. 1 and Fig. 2

To confirm the liability of the generated model, PLS 
analysis was performed using the same data set. both 
MLR and PLS should have comparable results75,76.
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PLS showed perfect results with r2 = 0.806 (training 
set) and 0.768 (test set). The PLS graphs for training and 
test set of compounds are shown in Fig. 3 and Fig. 4.

PLS equation (Dimension 2)
y = 0.4212 * X1 + 1.2180 * X2 + 0.5586 * X3 – 

0.7915 * X4 – 6.4590

10 
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fig. 1: Actual vs. predicted activity plot for the training 
set compounds derived from MLR analysis

fig. 2: Actual vs. predicted activity plot for the test set 
compounds derived from MLR analysis
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fig. 3: Actual vs. predicted activity plot for the training 
set compounds derived from PLS analysis
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Fig. 4: Actual vs. Predicted activity plot for the test set compounds derived from PLS 

analysis 

Further validation was done by performing ANN. The ANN graphs for training and test set of 
compounds are shown in Fig. 5 and Fig. 6. A typical training and validation error curve is shown in 
Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Actual vs. Predicted activity plot for the training set compounds derived from 

ANN analysis 

PLS (Test set) 

-2.5 -2 -1.5 -1 

R² = 0.768 
0 

-0.5 -0.2 0 
-0.4 
-0.6 
-0.8 

-1 
-1.2 
-1.4 
-1.6 
-1.8 

  -2  
Actual Activity 

ANN (Training Set) 

-4 -3 -2 -1 

R² = 0.8531 
0 

-0.5 0 

-1 

-1.5 

-2 

-2.5 

-3 

  -3.5  
Actual activity 

Pr
ed

ict
ed

 A
cti

vi
ty

 
Pr

ed
ict

ed
 A

cti
vi

ty
 

12 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Actual vs. Predicted activity plot for the test set compounds derived from PLS 
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fig. 4: Actual vs. predicted activity plot for the test set 
compounds derived from PLS analysis

PLS showed perfect results with r2 = 0.806 (training 
set) and 0.768 (test set) which further suggested the good 
external prediction.

Further validation was done by performing ANN. The 
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shown in Fig. 5 and Fig. 6. A typical training and validation 
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The best RMS fit was found to be 0.0842 at 429 
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was 0.09874.

fig. 5: Actual vs. predicted activity plot for the training 
set compounds derived from ANN analysis

Dipole moment Z component (subst. 1), Log P (subst. 
2), Shape Flexibility Index (whole molecule), and VAMP 
LUMO (whole molecule) were the inputs and negative 
log IC50 values were the output for the ANN model.

The actual and predicted values for the training and 
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fig. 7: Typical training and validation error curve

Table v: Actual and predicted values for the training set compounds obtained from MLR, PLS,  
and ffNN analysis of training set

Sr.
No.

Comp.
Name

Actual
activity

Predicted activity
MLR PLS ffNN

1. 1X -0.591 -2.289 -2.247 -1.213

2. 8X -3.220 -2.388 -2.751 -3.196

3. 9X -3.019 -2.809 -3.142 -2.965

4. 10X -2.530 -2.585 -2.858 -2.919

5. 12X -2.161 -1.954 -1.925 -1.656

6. 13X -2.301 -2.186 -2.287 -2.447

7. 14X -1.799 -2.005 -2.000 -1.919

8. 15X -2.829 -2.078 -2.132 -2.265

9. 17X -3.510 -2.734 -3.035 -2.992

10. 19X -1.568 -1.415 -1.159 -0.979

11. 20X -1.505 -1.650 -1.537 -1.626

12. 21X -1.544 -1.233 -0.909 -0.844

13. 22X -1.431 -1.420 -1.222 -1.319

14. 30X -1.851 -1.978 -1.988 -1.907

15. 34X -1 -1.394 -1.191 -1.084

16. 35X -1.041 -1.178 -0.939 -1.153

17. 37X -2.499 -2.272 -2.401 -2.641

18. 39X -0.919 -1.626 -1.488 -1.471

19. 42X -2.320 -2.021 -2.023 -2.054

20. 43X -0.892 -0.882 -0.458 -0.606

21. 44X -1.612 -1.686 -1.570 -1.563

22. 45X -1.447 -1.575 -1.423 -1.411
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23. 47X -0.857 -1.252 -0.911 -0.797

24. 4y -3.029 -2.363 -2.887 -3.303

25. 5y -1.491 -1.427 -1.811 -2.064

26. 11y -2.840 -2.232 -2.674 -3.315

27. 12y -2.041 -1.655 -2.014 -1.504

28. 18y -1.489 -1.377 -1.667 -1.402

29. 19y -1.149 -0.945 -1.054 -0.856

30. 20y -1.021 -0.858 -0.931 -0.791
31. 21y -0.929 -0.858 -0.935 -0.807

32. 22y -0.361 -0.725 -0.721 -0.646

33. 23y -1.041 -0.852 -0.965 -0.961

34. 24y -0.462 -0.395 -0.317 -0.662

35. 25y -0.681 -0.878 -0.880 -0.650

36. 26y -0.041 -0.626 -0.501 -0.521

37. 27y 0 -0.297 -0.062 -0.475

Sr.
No.

Comp.
Name

Actual
activity

Predicted activity
MLR PLS ffNN

Sr.
No.

Comp.
Name

Actual
activity

Predicted activity
MLR PLS ffNN

1. 11X -1.397 -2.375 -1.528 -2.874

2. 16X -2.021 -2.370 -1.586 -3.151

3. 29X -1.602 -2.285 -1.495 -2.906

4. 31X -1.380 -2.577 -1.471 -2.897

5. 32X -1.301 -2.105 -1.307 -2.424

6. 33X -1.100 -1.591 -1.178 -1.523

7. 36X -0.892 -1.691 -1.173 -1.733

8. 38X -1.149 -1.793 -1.222 -2.211

9. 46X -0.977 -1.374 -0.964 -1.327

10. 1y -1.612 -2.279 -1.439 -2.422

11. 9y -1.556 -2.001 -1.507 -1.017

12. 10y -1.255 -1.901 -1.609 -3.297

13. 28y -0.041 -0.100 -0.448 -0.529

14. 29y -0.361 0.047 -0.385 -0.511

15. 30y -0.278 0.390 -0.184 -0.484

16. 31y -1.290 -0.565 -0.716 -0.634

Table vI: Actual and predicted values for the training set compounds obtained from   
MLR, PLS, and ffNN analysis of test set
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Table vII: Chemical data of carbonitrile derivatives
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behavior of the molecule. It is negatively correlated 
with biological activity. This indicates that adding such 
groups in a molecule or a lead compound will lead 
to the increased polarity of the molecule, and thus 
decrease the biological activity. This clearly shows that 
the active site of cathepsin S enzyme will show some 
hydrophobic pockets to have hydrophobic interactions. It 
also provides the fact that the active site of cathepsin 
S enzyme is lipophilic in nature.

The second descriptor log P (subst. 1) explains 
the lipophilic character of the molecule. The descriptor 
is positively correlated with the biological activity. The 
less polar groups when introduced will tend to increase 
the biological activity.

Thus, the nature of both the descriptors clearly 
explains the hydrophobic nature of the active site of 
the target- cathepsin S enzyme.
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32. 22Y -0.361 -0.725 -0.721 -0.646 
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Table VI: Actual and predicted values for the training set compounds obtained from 
MLR, PLS, and FFNN analysis of test set 
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The third descriptor is the shape flexibility index 
(whole molecule) and it defines the flexible nature of the 
substituent which aids in the favorable drug-receptor 
interactions. The descriptor is positively correlated with 
the biological activity, thus adding such groups will cause 
an increase in the biological activity.

The fourth descriptor is the VAMP LUMO (whole 
molecule). VAMP LUMO is the energy of the lowest 
occupied molecular orbital. This energy is directly 
related to the electron affinity and characterizes the 
susceptibility of the molecule towards the attack by a 
nucleophile. It is negatively correlated with biological 
activity. Thus, the lesser the electron- donating groups 
added to the nucleus, the lesser is the electrostatic 
nature of the substituent and the greater is the increase 
in the biological activity.

CONCLUSION
QSAR study was successfully performed on a series 

of 6-phenyl-1H-imidazo [4, 5-c] pyridine-4-carbonitrile   and 
trifluoromethylphenyl   derivatives.    Significant   statistical   
values of MLR, PLS, and FFNN indicated the robustness 
of the   model.   Value of r 2 of 0.762, 0.806, and 0.853 
for MLR, PLS, and FFNN (training set), respectively, 
indicated the soundness of the model. Value of r2 of 
0.744, 0.768, and 0.677 for MLR, PLS and FFNN (test 
set), respectively, indicated better results. According to 
the classical QSAR models presented in the present 
work, the remaining four molecular descriptors- dipole 
moment, log P, shape flexibility index, and VAMP 
LUMO encoding the polarity, lipophilicity, shape and 
electrophilicity property of molecules gives the predictive 
information about the overall behavior of the molecules 
and are considered to be the important contributors 
to their biological properties. These findings   will 
be effective in designing more potent and effective 
cathepsin S inhibitors.
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